

Northwest Association of Networked Ocean Observing Systems

The Integrated Ocean Observing System (IOOS)
Regional Association for the Pacific NW

www.nanoos.org

WASHINGTON - OREGON - NORTHERN CALIFORNIA

Call to Order Welcome, Introductions, Charge for the Day

David Martin
NANOOS GC Board Chair

2. Introduction and IOOS Update

Dave Easter NOAA US IOOS Office

IOOS Advisory Committee Calls for Members

IOOS Advisory Committee, University of the Virgin Islands – St. Thomas, November 2015.
Image credit: U.S. IOOS

The <u>IOOS Advisory Committee</u> is looking for new members. The Committee provides advice to the Under Secretary of Commerce for Oceans and Atmosphere and to the Interagency Ocean Observation Committee (IOOC) on the planning, integrated design, operation, maintenance, enhancement, and expansion of U.S. IOOS. Applications will be accepted through September 20, 2017. Applications received after September 20, 2017 may not be considered during this membership application cycle, but may be considered for future cycles. **Read more** >

Washington - Oregon - Northern California

3. IOOS Association Update Josie Quintrell IOOS Assn Executive Director

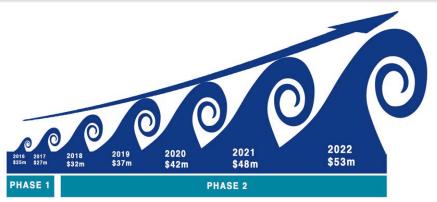
IOOS Association

NANOOS Annual Meeting August 10, 2017

IOOS Association

Observing our oceans, coasts and Great Lakes

Providing information to those who need it, when they need it



- Objectives:
 - Advocacy
 - Common Issues
 - IOOS federal/nonfederal partnership
 - Administration
 - Congress
 - National Partners
 - Emerging Issues

Closing the Gaps: 5 yr Campaign

- Scalable campaign
- Tangible outcomes
- Align with Administration Priorities
- Filling targeted gaps in:
 - HR Radars
 - Gliders

US IOOS FY 17 Request

Regional System Request: \$33.9 m

for the national network of 11 regional coastal \$24.3 million observing systems

\$1.5 for upgrades and repairs for aging regional systems million

to install 12 high frequency radar systems, to close key \$3.1 gaps and make the U.S. surface current mapping million system the most reliable, efficient and comprehensive in the world

for research and development, including competitive \$5.0 million grants, modeling and verification to develop new products and systems to ensure comprehensive coverage

National System Request- \$6.7 m

These funds will support the IOOS Program Office, to help:

- integrate federal and non-federal data
- develop the nation's first quality control standards for real-time data
- coordinate across NOAA and the 12 Federal IOOS agencies and
- certify the regional systems.

Search and rescue, oil spill response, harmful algal bloom tracking and forecasting, water quality monitoring, and port and harbor navigation all depend on real-time surface current mapping, IOOS operates our nation's only network of high-frequency radars (HFR) providing this information, but we have critical gaps in coverage.

WHERE OUR NATION NEEDS SURFACE CURRENT MAPPING:

Saving Lives off Florida's Coast

Florida's east coast is one of the Coast Guard's most active search and rescue areas. Real-time surface current information dramatically increases the odds of finding lost people or vessels.

2 radars needed

Saving millions in The Gulf of Mexico

The Gulf lacks surface current monitoring along 90 percent of its coast. including along the heavily traveled Mississippi delta. High-frequency radars provide data on the likely path of surface oil, saving time and money. 3 radars needed

Protecting Public Health in the Pacific Northwest

Shellfish growers, tribes, fishermen and others rely on critical information about harmful algal blooms, Better coverage helps protect public health and a growing aquaculture industry. 3 radars needed

Safeguarding the Arctic Highway

As ice recedes, more vessels traverse the dangerous waters of the Bering. Strait, including commercial cruise ships. But the Arctic lacks adequate critical surface current mapping to ensure safety.

2 remote radars needed

Cleaning up the Great Lakes

The 645-mile oil pipeline under the Straits of Mackinac is showing serious signs of deterioration. Better monitoring would allow a quicker and more effective response for oil spills that threaten the Great Lakes.

2 radars needed

Who Uses IOOS Data?

- · National Oceanic and Atmospheric Administration
- · Environmental Protection
- · Bureau of Ocean Energy Management
- . Office of Naval Research . U.S. Army Corps of Engineers
- · U.S. Coast Guard
- · Department of State
- . U.S. Arctic Research Commission
- . U.S. Ports · Shellfish growers
- Fishermen
- · Emergency managers
- · Public health officials (c.g., braches water quality)
- · Scafood safety officials · Oil spill responders
- · Recreational boaters
- · Researchers
- · Tribes

www.loosassociation.org

US IOOS FY 17 High Frequency Radar Request

\$3.1 million to install 12 high frequency radar systems

Safeguarding the Arctic Marine Highway

2 remote radars needed

Protecting Lives and Public Health in the Pacific Northwest

3 radars needed

Cleaning up the Great Lakes

3 radars needed

Saving Lives off Florida's Coast

2 radars needed

Saving Millions in the Gulf of Mexico

3 radars needed

Mapping Surface Currents

Seeing Underwater with Coastal Gliders

US IOOS FY 18 and beyond...

- FY 18 HFR and gliders
 NANOOS glider request:
 - Make Columbia and La Push gliders operational
 - More gliders for swapping
 - New Cape Blanco line
- Beyond:
 - HABs
 - Water level
 - Navigation

Appropriations

	FY 11 Spend Plan	FY 12 Spend Plan	FY 13 Spend Plan	FY14 Enacted	FY 15 Enacted	FY 16 Enacted	FY 17 Enacted	FY 18 Pres. Budget	FY 18 Assoc. Request
Regional IOOS Total	\$21.9m	\$22.9m	\$26.5m	\$28.5m	\$29.5m	\$29.5m	\$30.7m	\$29.4m	\$35.9m
National Network of Regional Ocean Systems	\$20m	\$22m	\$23.5m	\$24.3m	\$24.5m	\$24.5m	\$25.2m	\$24.4m	\$24.5m
Gaps in Radars and Gliders									\$6.4m
Marine Sensor Innovation Grants, Modeling Test Bed, Sensor Verification	\$1.9m	\$1m	\$3m	\$4.2m	\$5m	\$5m	\$5.5m	\$5m	\$5m
U.S. IOOS Program Office*	\$6.6m	\$6.4m	\$6m	\$6.5m	\$6.6m	\$6.7m	\$6.7m	\$6.7m	\$6.7m
Total U.S. IOOS	\$28.5m	\$29.3m	\$32.5m	\$35m	\$36.1m	\$36.2m	\$37.4m	\$36.1m	\$42.6m

^{*} Funding included in the Navigation, Observations and Positioning funding line

Budgets

FY 16 \$29,500

FY 17 \$30,700 (+1.2M)

FY 18

Pres Bud \$29,500

Senate \$33,700

House \$31,000

ICOOS Act Reauthorization

SENATE – S. 1425

Senators Wicker (R-MS) and Cantwell (D-WA) introduced S. 1425 "A bill to reauthorize the Integrated Ocean Observing System Act of 2017.

Co-Sponsors: Senators Sullivan (R-AK), Murkowski (R-AK), Graham (R-SC), Cassidy (R-LA), Collins (R-ME), Markey (D-MA), Peters (D-MI) and Schatz (D-HI).

House – HR 237

Representative Young (R-AK) has introduced H.R. 237 "Integrated Coastal and Ocean Observation System Act Amendment of 2017."

RA Certification

- 7 RAs certified!
 - Congratulations to
 - PacIOOS, GLOS, MARACOOS,

SCCOOS, CariCOOS, SECOORA, AOOS

- All others in process
- Opportunity to engage federal agencies
 - Operational forecasting
 - Regional data sharing
 - Agency engagement

Upcoming

- House Briefing ICOOS Act
- Congressional Site Visits Summer
 - Congressional outreach Bring them to IOOS!
 - Meetings, tours, field trips
- Foundation Funding explore national campaign
- House Ocean Caucus Reception Fall
- IOOS Annual Meeting Sept 26-27 PR

IOOS OpEd Project

- Raise awareness of sustained observations
- 1 OpEd in each region (or more)
- Will work with RAs to find compelling stories and authors
- Editorial assistance to frame story for publishing
- Link to social media

March Madness

- Strategic Planning
- Joint DMAC Meeting
- Congressional Visits
 - *Over 75 Offices visited
 - * OMB

HFR and Gliders

Search and rescue, oil spill response, harmful algal bloom tracking and forecasting, water quality monitoring, and port and harbor navigation all depend on real-time surface current mapping. IOOS operates our nation's only

network of high-frequency radars (HF radars) providing this information.

Despite the far-ranging use of this data, there are critical gaps in coverage

WHAT ARE HIGH-FREQUENCY RADARS

Land-based HF radar uses radiowave backscatter to map the speed and direction of surface currents in real time. Because of the large coverage area, HF radar data are also valuable input for ocean models and for assisting with search and rescue operations and oil spill response.

Map of IOOS high-frequency radars that provide real-time surface currents.

For more information, contact Josie Quintrell, Executive Director, IOOS Association 207-798-0857 | Josie@ioosassociation.org

IOOS gliders provide data to support a range of operations including improving hurricane warnings, detecting harmful algal blooms, ensuring safe navigation, supporting offshore energy operations, fishermen and fisheries management and enhancing public health and safety.

An interagency Federal-regional partnership in NOAAts National Ocean Service

Gliders are underwater robots that relay information about subsurface conditions. The U.S. Navy estimates gliders are 1/100th of the cost of ship-collected data. Gliders are revolutionizing ocean observing by being cost effective, safe and flexible.

IOOS FY 18 GLIDER REQUEST: \$3.3m

Where our nation needs gliders to support safe navigation, public health and safety, and the economy:

Great Lakes: Protecting Drinking Water

Over 35 million people depend on the Great Lakes for their drinking water. Gliders provide the flexibility to focus on issues impacting local areas and to better predict the risk of harmful algal blooms (HABs).

Northeast: Enhancing Maritime Industry By Reducing Endangered Right Whale Collisions

Ship strikes and fishing gear entanglements threaten the endangered right whales. Gliders equipped with acoustic sensors can detect the whales and alert mariners and fishermen in real time about the location of the whales, thus minimizing impacts.

Mid-Atlantic: Protecting Lives and Property From Hurricanes

Gliders are a safe method for seeing below the surface of the coastal ocean, where strong winds stir cold water upwards, affecting the intensity of the storm. Such information improves warnings that can protect lives and property.

Southeast: Saving Lives, Supporting Fisheries and Detecting HABs

Information gathered from gliders along the Southeast coast is critical for predicting riptides, optimizing fisheries management models, improving hurricane intensity forecasts and detecting marine mammals and HABs.

NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS (NANOOS)

The eye on the Pacific Northwest's ocean and coast

66 NANOOS provides critical life safety information to the public, aiding coastal communities to reduce risk. Jonathan Allan, Coastal Geomorphologist on Department of Geology and Mineral Industries

NANOOS is the Regional Association of the national Integrated Ocean Observing System (IOOS) in the Pacific Northwest, primarily Washington and Oregon, Investments in NANOOS have resulted in high-technology jobs, better-informed decisions, and new innovation.

We help improve:

HEALTH

Decision-making to protect human health

SAFETY

Enabling preparedness and security

ECONOMY

Preserving economic benefits of the ocean

The NANOOS Visualization System (NVS) integrates data from a wide variety of sources and makes that data available in one online Real-time observations and forecasts from a range of assets including buoys, shore and tidal stations, high-frequency radar, wave and current forecasts, and satellites are available in user-friendly data displays. NVS provides sophisticated yet accessible capabilities such as comparisons of forecasts with real-time observations, and customized presentations based on community feedback

Benefits for People and Businesses in the Pacific Northwest

Innovative Technology for Safe & Profitable Resource Use

NANOOS detects toxins from harmful algal blooms (HABs) from an undersea robot at La Push. "Having the NANOOS automated HAB sampler, with toxin assessment capability, offshore between our harvest beaches and the HAB generation sites will give tribes the forewarning they need to adjust sampling protocols and better protect the health of coastal residents, tribal and non-tribal" - Joe Schumacker, Department of Fisheries, Quinault Indian Nation

NANOOS partners with industry to develop a lower cost sensor for effective shellfish growing. "This current generation of shellfish farmer is reliant upon data and services from NANOOS. Checking the NANOOS app before seeding a beach or filling a settling tank has become standard practice." - Margaret Barrette, Pacific Coast Shellfish Growers Association Director

Support for Maritime Operations, Safety & Fishing Commerce

NANOOS data products allow mariners to choose safe and efficient routing. High frequency radars in Oregon provide real-time data on surface currents, which decrease the size of search and rescue areas by two-thirds. We need to extend this radar system to the Washington Coast to fill the gap in coverage.

"Ships crossing the Columbia River Bar face one of the most dangerous harbor entrances in the world. The Columbia River Bar Pilots rely on weather forecasts, real time buoy data along with wave and current models when determining safe times for ships to cross the bar. NANOOS provides an excellent location for us to see and compare all the available data sources." Captain Dan Jordan. Columbia River Bar Pilots

Information for Coastal Hazard Risk Reduction

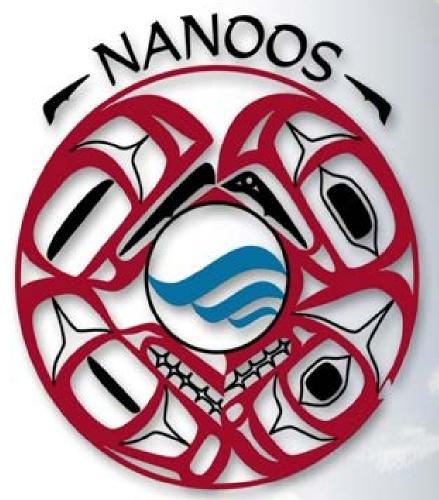
NANOOS products help coastal communities minimize impacts from coastal hazards and keep the public safe. NANOOS data are used by the Oregon Department of Geology and Mineral Industries (DOGAMI) for coastal flood hazard maps; together NANOOS and DOGAMI provide tsunami hazard evacuation information to coastal populations. Both products aid risk reduction and increase coastal preparedness.

NANOOS support has "...provided us with invaluable information concerning our ongoing erosion problems. Without such assistance, we are operating blind." - Mayor Crystal Dingler, City of Ocean Shores

"The Oregon Office of Emergency Management (OEM) appreciates the tools that NANOOS provides. The online tsunami evacuation route viewer is especially useful in helping coastal residents and visitors understand and respond to the tsunami hazards." Althea Rizzo, Oregon OEM Geologic Hazards Program Coordinator

For More Information

Contact us if you have any questions, or to learn more about our program: Jan Newton, NANOOS Executive Director Tel: (206) 543-9152 | janewton@uw.edu



4. NANOOS Update

Jan Newton NANOOS Executive Director

Northwest Association of Networked Ocean Observing Systems

The Integrated Ocean Observing System (IOOS)
Regional Association for the Pacific NW

www.nanoos.org

NANOOS Governing Council Members 8/2016

Northwest Association of Networked Ocean Observing Systems

- Ocean Inquiry Project
 OR Dept of Land Conservation & Development
- 3. Surfrider Foundation
- 4. The Boeing Company
- 5. Oregon State University
- 6. Oregon Sea Grant
- 7. Puget Sound Partnership
- 8. University of Washington
- 9. Washington Sea Grant
- 10. WET Labs, Inc.
- 11. Oregon Health and Sciences University
- 12. Quileute Indian Tribe
- 13. OR Dept of Geology and Mineral Industries
- 14. Humboldt State University
- 15. Marine Exchange of Puget Sound
- 16. WA Dept of Ecology
- 17. Pacific Northwest National Laboratory
- 18. Port of Newport
- 19. Puget Sound Harbor Safety Committee
- 20. Sound Ocean Systems, Inc.
- 21. Council of American Master Mariners
- 22. Pacific Northwest Salmon Center (& HCSEG)
- 23. Northwest Indian Fisheries Commission
- 24. Sea-Bird Electronics, Inc.
- 25. Western Association of Marine Laboratories
- 26. Science Applications International Corporation
- 27. OR Dept of Fish and Wildlife
- 28. King County Dept Natural Resources & Parks
- 29. Quinault Indian Nation
- 30. Western Resources and Applications

- 31. OR Dept of State Lands
- 32. Columbia River Crab Fisherman's Association
- 33. Port of Neah Bay
- 34. Northwest Research Associates
- 35. Pacific Ocean Shelf Tracking Project
- 36. WA Dept of Fish and Wildlife
- 37. Northwest Aquatic and Marine Educators
- 38. Seattle Aquarium
- 39. NOAA Northwest Fisheries Science Center
- 40. Port Gamble S' Klallam Tribe
- 41. The Nature Conservancy
- 42. Portland State University
- 43. NOAA Olympic Coast National Marine Sanctuary
- 44. University of Victoria
- 45. University of Oregon
- 46. Port Townsend Marine Science Center
- 47. Intellicheck-Mobilisa
- 48. NortekUSA
- 49. Grays Harbor Historical Seaport Authority
- 50. Pacific Coast Shellfish Growers Association
- 51. US Army Corps Engineers
- 52. Olympic National Park
- 53. Oak Harbor Middle School
- 54. Vancouver Island University
- 55. Ocean Networks Canada
- 56. Lower Columbia Estuary Partnership
- 57. Western Washington University
- 58. Raincoast GeoResarch
- 59. WA Dept of Health
- 60. Say Yes to Life Swims

- 61. NOAA PMEL
- 62. Hakai Institute
- 63. Salish Sea Expeditions
- 64. Aquatic Innovations Research
- 65. Long Live the Kings

New NANOOS members

- Aquatic Innovations Research
- Long Live the Kings

Welcome!

Coastal ocean:

Northern extent of California Current Winds, topography, freshwater input, ENSO & other climate cycles

Major inland basins:

Puget Sound-Georgia Basin, Columbia River Urban centers, nearshore development, climate variation

Coastal estuaries:

Willapa Bay, Grays Harbor, Yaquina Bay, Coos Bay, +20 Resource extraction, development, climate

Shorelines:

Rocky to sandy, dynamic: storms, erosion Winds, development, climate

Major rivers:

Columbia River (~75% FW input to Pacific from US WC) many rivers (e.g., Fraser, Skagit) via Strait Juan de Fuca Dredging, water regulation, climate change

NANOOS Region User Groups:

Maritime: shipping, oil transport/spill remediation

Fisheries: salmon, shellfish, crab, groundfish, aquaculture

Environmental management: HABs, hypoxia

Shoreline: erosion, inundation

Hazards: Search and rescue, national security

Educators: formal, informal, research

Marine recreation: boating, surfing, diving

Washington - Oregon - Northern California

NANOOS budget:

FY07-09: \$1.4M + 0.4M = \$1,800,000

Year 1, 2, 3

FY10: \$1.7M + 0.4M = \$2,100,000

Year 4

FY11: \$2,087,500 (w/ new start date)

Year 5 or 1 of new 5-y award

FY12: \$2,428,291 (\$2,288,000 base; ~\$140K for DMAC, OA workshops)

Year 6 or 2

FY13: \$3,089,477 (\$2,392,136 base; ~\$700K for OTT on OA plus OAP)

Year 7 or 3

FY14: \$2,818,441 (\$2,442,136 base; \$109K HF; \$217K OAP; \$50K glider)

Year 8 or 4

FY15: \$2,771,890 (\$2,462,136 base; \$309K OAP obs/adds)

Year 9 or 5

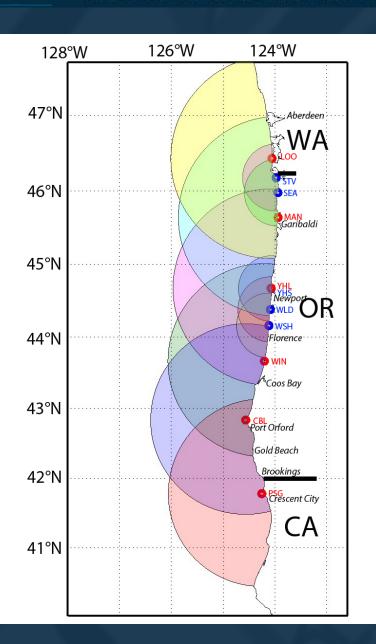
FY16: \$2,848,900 (\$2,452,552 base; \$317K OAP obs; \$79K adds)

Year 10 or 1

FY17: \$3,216,463 (\$2,457,136 base; \$360K HFR; \$282K OAP; \$117K adds)

Year 11 or 2

NANOOS budget:


FY17: \$3,216,463 (\$2,457,136 base; \$360K HFR; \$282K OAP; \$117K adds)

- \$360,000 for the purchase and deployment of two HF radars.
- \$50,000 to plan and execute a training event for biological data management with the MBON community
- \$55,000 for the Ocean Technology Transition "Customer Service Application Project"
- \$12,000 for OCS Olympic Coast cruise
- \$30,000 to enhance the GOA-ON data portal as an OA dashboard to the World (Newton)
- \$75,000 NANOOS Multi-Scale Prediction of California Current Carbonate System Dynamics (Hales)
- \$64,181 for NANOOS Ocean Acidification Monitoring and Prediction in Oregon Coastal Waters (Hales)
- \$33,146 NANOOS UW OA observatories (Newton)
- \$25,000 to enhance the Cha'ba Mooring Program to Allow Year-Round Deployments (Newton)
- \$55,000 for UW OA observatories (Newton): Replacement System due to loss

NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS

Map coastal currents from 11 remotesensing sites on the coast Two kinds:

Long-Range: (4.8 MHz, 150km range, 6 km radial interval.

Std-Range (12-13 Hz, 50+ km range, 2km radial inteval).

Time-resolution, 1 hr

Radial Currents: toward or away from each radar site. Scalar: one component

Total (or Vector) Currents: combine radial currents from 2 or more sites.

Instruments purchased for previous science experiments with funding from NSF, ONR, NOAA/GLOBEC. This year added some backup from

IOOS

US IOOS FY 17 High Frequency Radar Request

\$3.1 million to install 12 high frequency radar systems

Safeguarding the Arctic Marine Highway

2 remote radars needed

Protecting Lives and Public Health in the Pacific Northwest

Cleaning up the **Great Lakes** 3 radars needed

Saving Lives off Florida's Coast

2 radars needed

Saving Millions in the Gulf of Mexico

3 radars needed

3 radars needed

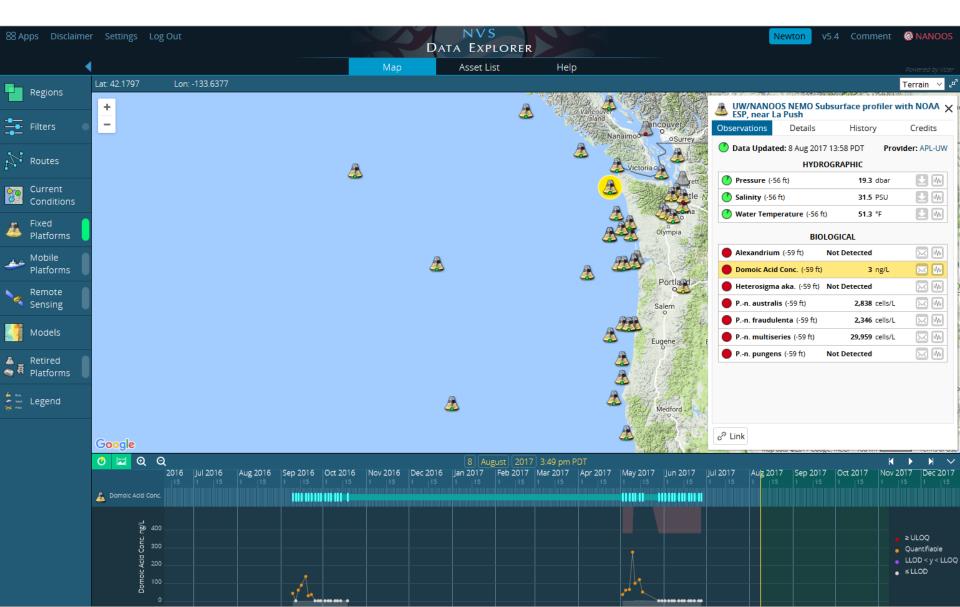
NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS

NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS

NANOOS Objectives for FY2017

- 1) Maintain NANOOS as the U.S. IOOS PNW Regional Association
- 2) Maintain surface current and wave mapping capability.
- 3) Sustain **existing buoys and gliders in the PNW coastal ocean**, in coordination with national programs.
- 4) Maintain **observation capabilities in PNW estuaries**, in coordination with local and regional programs.
- 5) Maintain core elements of beach and shoreline observing programs.
- 6) Provide sustained support to a **community of complementary regional numerical models**.
- 7) Maintain NANOOS' Data Management and Communications (DMAC) system for routine operational distribution of data and information.
- 8) Continue to deliver existing and, to the extent possible, create innovative and transformative user-defined products and services for PNW stakeholders.
- 9) Sustain NANOOS outreach, engagement and education.

Washington - Oregon - Northern California


OTT: HABs

"Operational ecological forecasting of harmful algal blooms in the Pacific Northwest using an environmental sample processor"

- ESP on Cha'ba at La Push
- UW, NOAA NWFSC, MBARI, NOAA CCEHBR, NWIC, Spyglass, WHOI
- Detects Pseudo-nitzschia cells, species, toxicity
- Strong support from coastal tribes, WA managers
- Tested in PS 2015; NANOOS served data: "Real-Time HABs"
- Deployed off coast May-July'16, Sep-Oct '16, May-July '17, and planned for Sep '17

HABs on NVS

Real-time HABs

Home

ESP Now

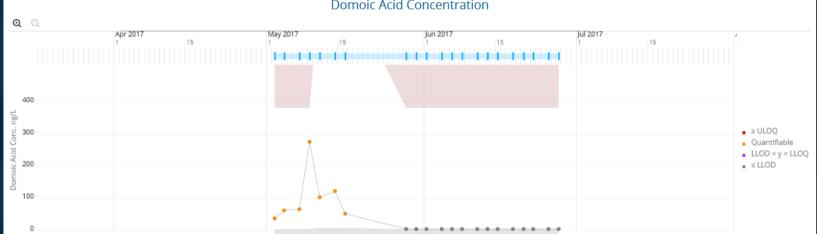
ESP Then About Media People Partners Disclaimer Contact

HAB Measurements

Water Measurements

HABs in NVS

The latest water measurements at the NEMO Observatory site where the Environmental Sample Processor is located 13 miles off La Push, Washington. Data are updated in near-real time. These products are provided to help understand where toxic algae may be moving and the conditions that may influence toxic blooms.


Species Abundance Species Present / Not Detected Pseudo-nitzschia australis Alexandrium Species Pseudo-nitzschia multiseries Heterosigma akashiwo Pseudo-nitzschia fraudulenta

Pseudo-nitzschia pungens

Toxins

Domoic Acid Concentration

Domoic Acid Concentration

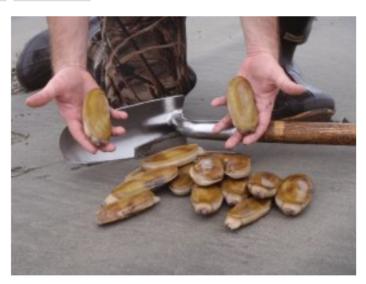
Concentration of particulate domoic acid in seawater. Domoic acid is a toxin produced by some species of phytoplankton in the genus Pseudo-nitzschia. If domoic acid concentrations are detected above the Lower Limit Of Quantification (LLOQ, see description below), this means that one or more Pseudo-nitzschia species are producing the toxin. There is no regulatory threshold for domoic acid in seawater, rather the toxin is regulated based on its concentration in the tissues of shellfish where 20 ppm is a "no-harvest" limit (see the Washington State Department of Health Beach Closures site). However, a high seawater domoic acid concentration may provide an early warning of a HAB event.

New HAB Forecast System to be Developed for PNW

NOAA's National Centers for Coastal Ocean Science (NCCOS) are funding development of a harmful algal bloom (HAB) forecast in the Pacific Northwest to support management of shellfisheries, clamming beaches, and human health. The experimental monitoring and forecasting system will launch in 2017, with forecast bulletins predicting bloom location and concentration several days in advance. This new development is a joint effort between NOAA, members of the Makah Tribe, the University of Washington, the University of Strathclyde, the Oregon Department of Fish and Wildlife, and NANOOS.

30 Sep 2016

View the NCCOS Article


Visit NANOOS' New Real-Time HAB Website

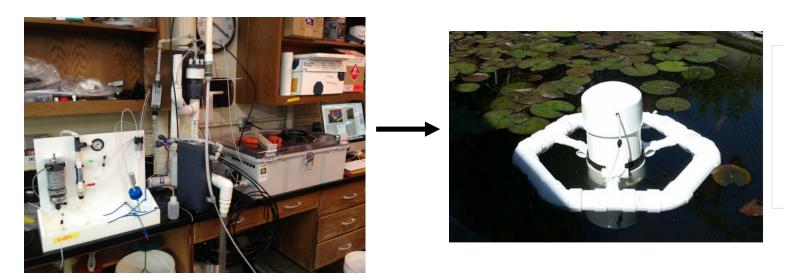
NOAA Funds Harmful Algal Bloom Forecast System Development in Pacific Northwest

Posted on September 29th, 2016 (10 months ago) in Ecology & Oceanography, Forecasting, Harmful Algal Blooms, Marine Biotoxin Impacts, Monitoring & Event Response, Water Quality

NOAA's National Centers for Coastal Ocean Science (NCCOS) are funding development of a harmful algal bloom (HAB) forecast in the Pacific Northwest to support management of shellfisheries, clamming beaches, and human health. The experimental monitoring and forecasting system will launch in 2017, with forecast bulletins predicting bloom location and concentration several days in advance.

Annual outbreaks of the toxic algae Pseudonitzschia produce the neurotoxin domoic acid,
which builds up in exposed shellfish and can cause
amnesic shellfish poisoning (ASP) in humans.
Commercial and recreational shellfisheries are
therefore monitored for HAB toxins, and closed to
prevent outbreaks of ASP. These closures can
result in millions of dollars in lost harvests. For

Razor clams are an economically important shellfish harvest off the coasts of Oregon and Washington. Closures due to *Pseudo-nitzschia* exposure in 2015 led to \$22.7 million in losses. Credit: Washington Department of Fish and Wildlife.



OTT: OA

"Turning the headlight on 'high': Improving an ocean acidification observation system in support of Pacific coast shellfish growers."

- New "ACDC" pCO₂ sensor
- UW, OSU, Sunburst, AOOS, CeNCOOS, SCCOOS, NOAA PMEL, PCSGA
- Lower cost pCO₂ for "weather" grade data
- Strong support from shellfish industry
- Builds on existing Burke-o-lators in hatcheries and the IPACOA portal

Burkeolator ACDC

Science-Grower Partnerships

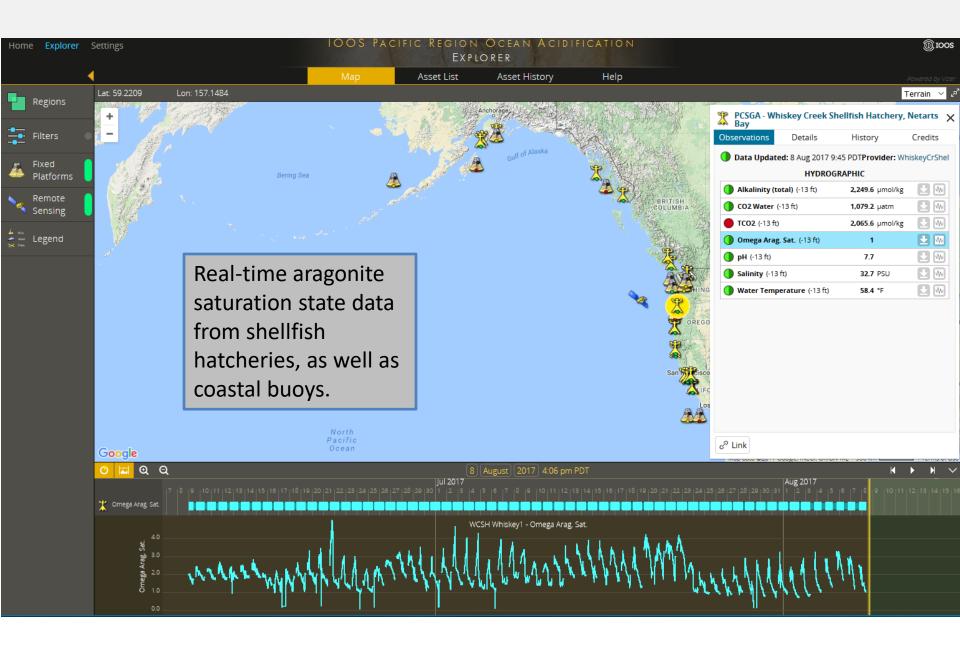
Wiley Evans, Hakai Institute

Simone Alin, **NOAA PMEL** ska Ocean Observing System Alutiiq Pride Shellfish Hatchery Seward, AK Taylor Shellfish Hatchery

STATE OF OREGON

QA

Burke Hales,


OSU

Tessa Hill, **UC Davis**

Quilcene, WA Whiskey Creek Shellfish Hatche Tillamook, OR CeNCOOS 4 Hog Island Oyster Comp Tomales Bay, CA **Carlsbad Aquafarm** Carlsbad, CA

Todd Martz, SIO

IPACOA: IOOS Pacific Region ocean acidification data portal

IPACOA

IOOS Pacific Region OA

turning into

IOOS Partners Across Coasts for OA

WASHINGTON - OREGON - NORTHERN CALIFORNIA

Other '16-17 NANOOS activity

Certification Application submitted!!

18 July, with 90-day review clock

Washington - Oregon - Northern California

Other '16-17 NANOOS activity

National Strategy for Sustained Network of Coastal Moorings Released

IOOS, the National Ocean Service (NOS) and the National Weather Service (NWS) have released the "National Strategy for a Sustained Network of Coastal Moorings". The Strategy evaluates the existing inventory and provides ten recommendations towards development of an implementation plan. The primary recommendation is to identify regional observing gaps best addressed with coastal moorings, using a targeted stakeholder engagement approach to integrate stakeholder input. This effort will be led jointly by NOAA mooring operators and IOOS RAs, like NANOOS.

25 Jan 2017

Read the Full National Strategy (PDF)

View Full Article on IOOS Website

NANOOS Participates in NOAA West Watch

NOAA's Western Regional Environmental Conditions and Impacts Coordination project brought back its popular webinar series again and will present every other month. The January 2017 webinar summarized coastal environmental conditions and impacts in the Western Region. The webinar included contributed slides from NANOOS, CeNCOOS and SCCOOS, who will regularly report on their local coastal ocean conditions. The next webinar will be 20 March 2017 at 1 pm. Contact us at NANOOS if you want to participate.

24 Jan 2017

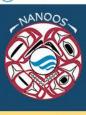
View the Webinar Slide Set (PDF)

Great Attendance at the NANOOS Community Workshop!

A big thank you to over 60 people who attended our NANOOS Community Workshop on July 13th in Newport, Oregon. During the one-day workshop, participants learned about what NANOOS is doing and explored NANOOS products and services including NANOOS' data portal, the NANOOS Visualization System and its many topical specialized apps. Most importantly, the participants provided us with helpful feedback on our products. We look forward to implementing some useful modifications.

26 Jul 2017

NANOOS Presentation (PDF)


Workshop Agenda (PDF)

NANOOS Community Workshop Site

-NANOOS-

Welcome to NANOOS, the Northwest Association of Networked Ocean Observing Systems. NANOOS is part of IOOS and provides information and products related to weather and ocean data.

NANOOS Visualization System NVS provides easy access to observations, forecasts, data, and visualizations.

NVS for specific user groups with targeted subsets of the data

88 Apps

About

Disclaimer Settings Log In

NVS

(All NANOOS assets and data streams)

Data Explorer

Shellfish Growers

High Frequency Radar

Beach and Shoreline Changes

Cruises

Maritime Operations

Gliders

Climatology

NANOOS focal areas:

Maritime Operations

• Ecosystem Assessment

(also hypoxia, HABs)

Fisheries and Biodiversity

Coastal Hazards

• Climate

Some users say good things...

Ships crossing the Columbia River Bar face one of the most dangerous harbor entrances in the world. The Columbia River Bar Pilots rely on weather forecasts, real time buoy data along with wave and current models when determining safe times for ships to cross the bar. NANOOS provides an excellent location for us to see and compare all the available data sources.

- Captain Dan Jordan, Columbia River Bar Pilots

NANOOS provides critical life safety information to the public, aiding coastal communities to reduce risk."

- Jonathan Allan, Coastal Geomorphologist Oregon Department of Geology and Mineral Industries

Accomplishments:

NANOOS sets bar high

NANOOS is supporting the region

NANOOS is relevant nationally

NANOOS leadership visible internationally

NANOOS uses its governance

NANOOS remains vital!

"Why is NANOOS so good?"

- The people: creativity
- The spirit: cooperation
- The concept: collaboration
- New capabilities in all sectors

 But now is the time to spread the news for more usage...

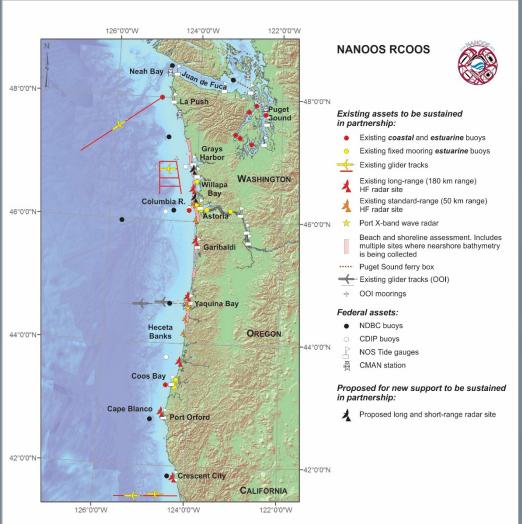
Challenges

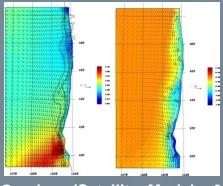
- Sustaining infrastructure on ~level funding
- Avoiding that NANOOS is the best kept secret

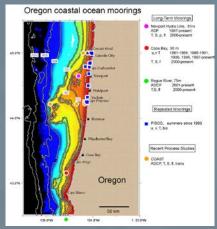
Continuing to demonstrate utility

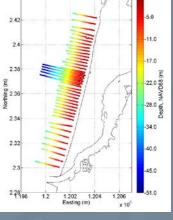
5. NANOOS Standing Committees reports

NANOOS User Products Update


Jonathan Allan
NANOOS User Products Chair


Team: Troy Tanner, Emilio Mayorga, Amy Glaub Sprenger, Rachel Wold, Marine Lebrec, Jan Newton (APL, UW); Craig Risien, Mike Kosro (CEOAS, OSU), Charles Seaton (CMOP, OHSU)




Lots of data: NANOOS provides access to 47 different types of variables, and in total ~200 'assets' & 10 model/forecast overlays.

Overlays (Satellite, Models, & other geospatial data)

Gliders

Shorelines & Bathymetry

NANOOS visualization system

Objective: to aid our understanding of climate variability, safety, operations, and lead to improved resource management and regional productivity throughout the region.

Goal is the seamless delivery of coastal, estuarine and ocean data to stakeholders within the NANOOS domain (+external partners, other RCOOS, and national/international programs).

Enabling:

- greater situational awareness (local and regional scales);
- improved access to and understanding of environmental variables/conditions; and,
- enable development and access to short- and long-term timeseries.

West Coast Ocean Data Portal

NVS History and Status:

Nov. 2009 - v1.0 released

May 2010 - v1.6 released (added access to various map image overlays e.g. HF radar, satellite imagery, and ocean models). v1.0 iPhone NVS mobile app released

...

Jun 2011 - v. 2.0 iPhone NVS released (Android Sep 2011)

Nov 2011 - v. 1.0 iPhone TsunamiNW-Evac app released (Android Jan 2012)

Mar 2013 - v3.0 – Major overhaul of interface; move to Google Maps 3 API; move to dedicated web apps.

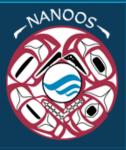
...

Oct 2014 – v3.8 – Climatology web app released

. . . .

Sep 2016 – v 5.0 – Added profile plots, depth vs time (heatmap plots) and current conditions (Explorer);

Nov 2016 – v 5.1 – Added evacuation route modeling results to select communities. Improved access to evacuation brochures (Tsunami);


Jan 2017 – v5.2 – Added route feature (Tuna);

Feb 2017 – v5.3 – Updated Salish Cruise plots/interface. Modifications to tsunami evacuation portal (added safety destinations) (Explorer/Tsunami);

Jun 2017 - v. 4.0 iPhone/Android NVS rebuild released

Jul 2017 – v5.4 – Built HF radar plotting capability; Updated climatology indices; Updated Washington State tsunami evacuation zones (Explorer/Tsunami/Climatology);

OBSERVING SYSTEMS

Home About NANOOS How to use this site Disclaimer

Data Explorer

Products Services

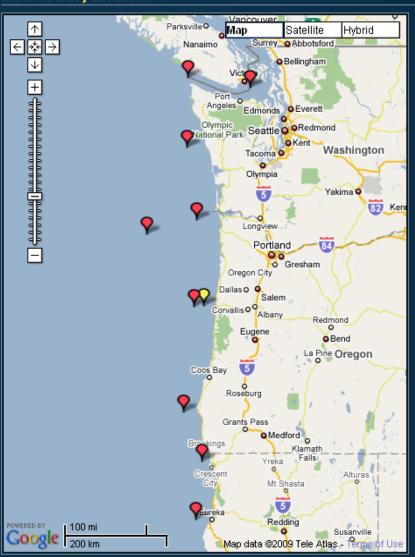
Education

Introduction **Lesson Plans**

Resources

Myoos

Log In


Create New Account

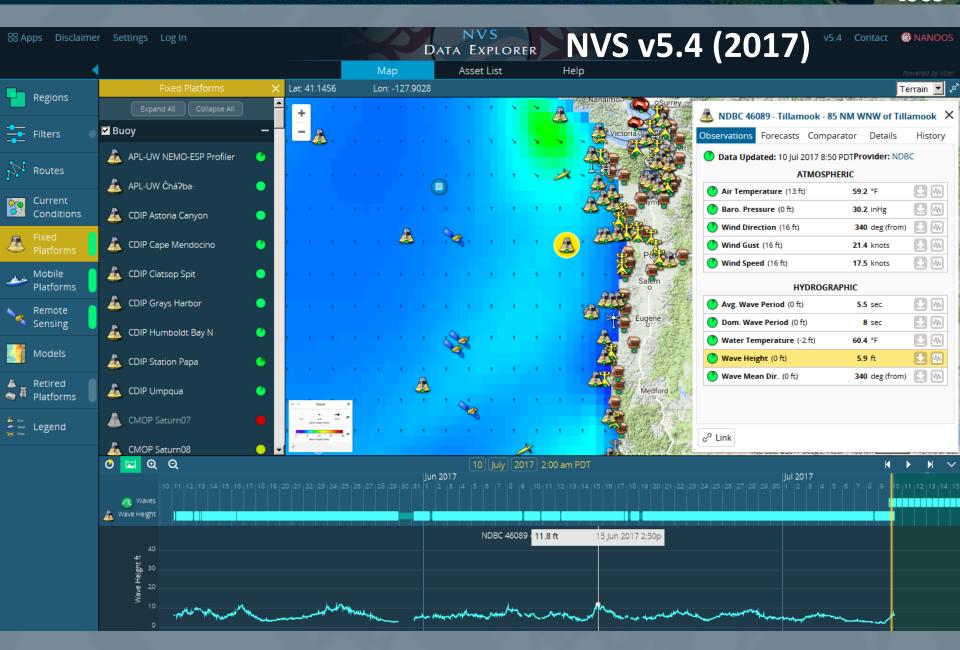
Sponsors

NANOOS Buoy Locations

Map Legend

- NANOOS Buoy: NH-10
- NDBC Buoys

NVS v1.0 (2009)


Lat: 48.4875, Lon: -127.5293

-NANOOS-

NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS

NVS History and Status:

Nov. 2009 - v1.0 released
....

May 2010 - v1.6 released (added access to various map image overlays e.g. HF radar, satellite imagery, and ocean models). v1.0 iPhone NVS mobile app released
....

Jun 2011 - v. 2.0 iPhone NVS released (Android Sep 2011)

Nov 2011 - v. 1.0 iPhone TsunamiNW-Evac app released (Android Jan 2012)

Mar 2013 - v3.0 - Major overhaul of interface; move to Google Maps 3 API; move to dedicated web apps.
....
Oct 2014 - v3.8 - Climatology web app released

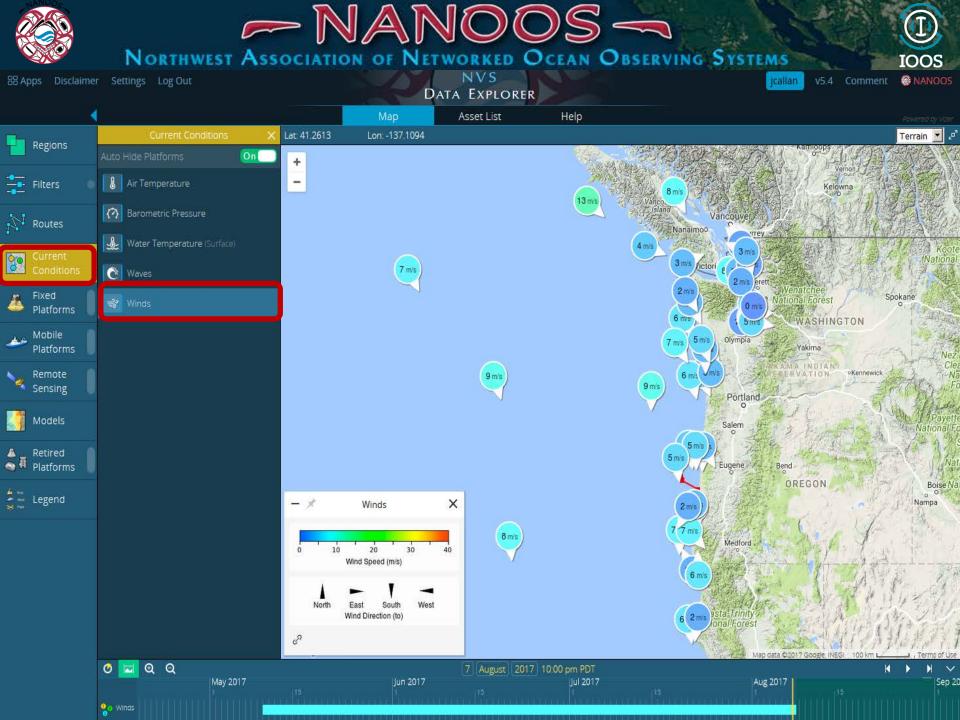
Sep 2016 – v 5.0 – Added profile plots, depth vs time (heatmap plots) and current conditions (Explorer);

Nov 2016 – v 5.1 – Added evacuation route modeling results to select communities. Improved access to evacuation brochures (Tsunami);

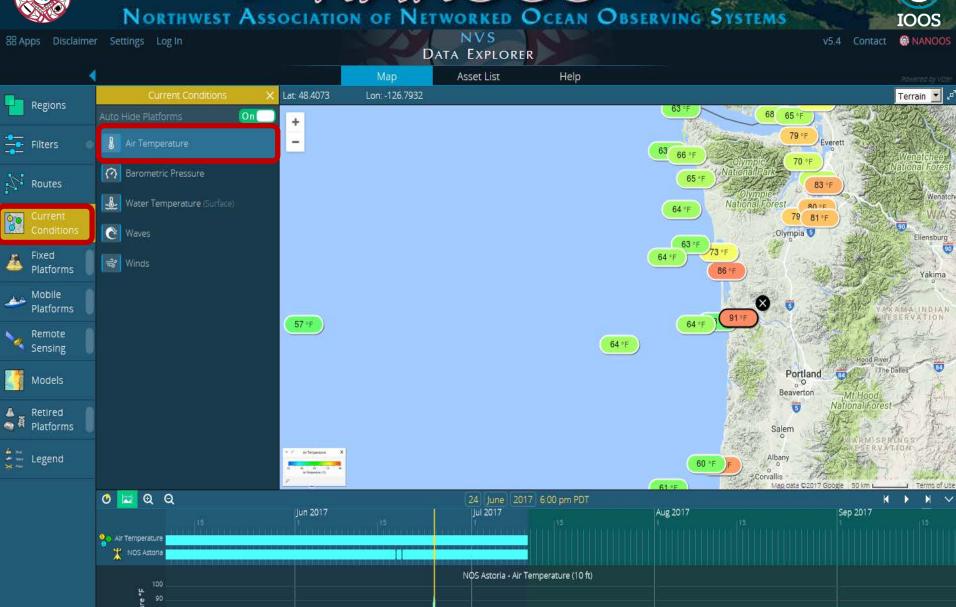
Jan 2017 – v5.2 – Added route feature (Tuna);

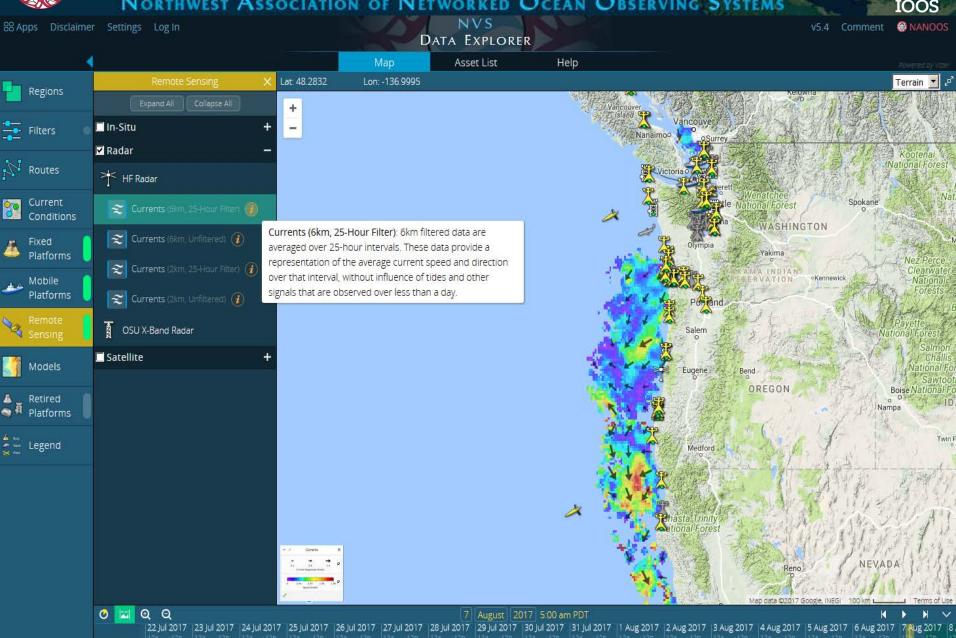
Feb 2017 – v5.3 – Updated Salish Cruise plots/interface. Modifications to tsunami evacuation portal (added safety destinations) (Explorer/Tsunami);

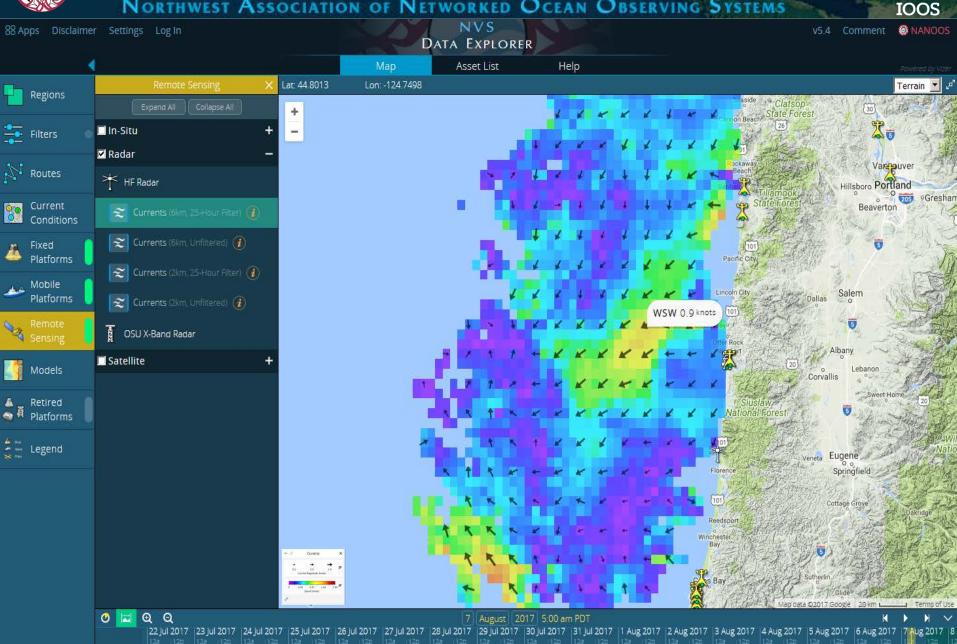
Jun 2017 - v. 4.0 iPhone/Android NVS rebuild released ← smartphone


Jul 2017 – v5.4 – Built HF radar plotting capability; Updated climatology indices; Updated Washington State tsunami evacuation zones

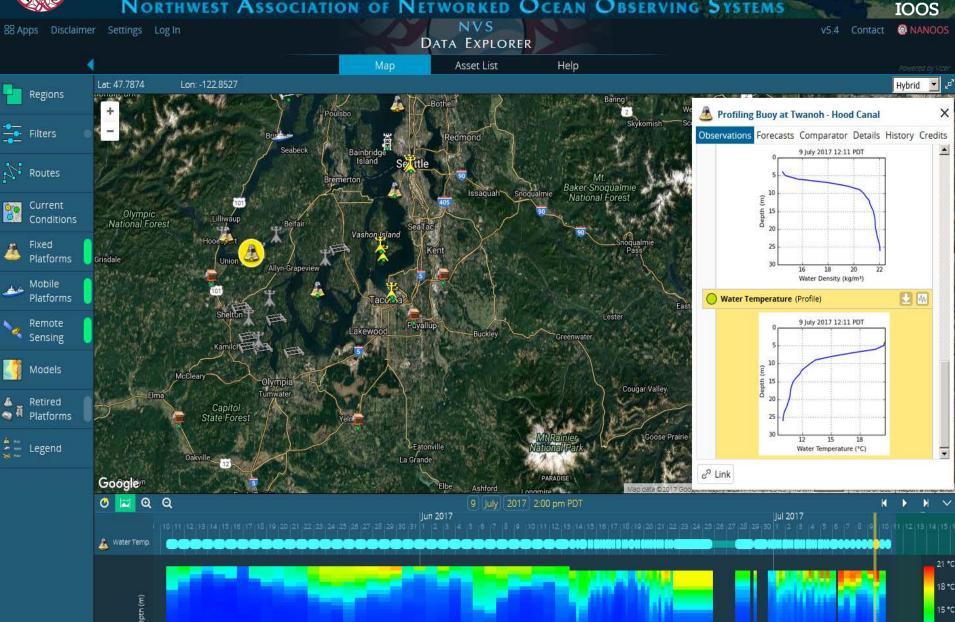
(Explorer/Tsunami/Climatology);

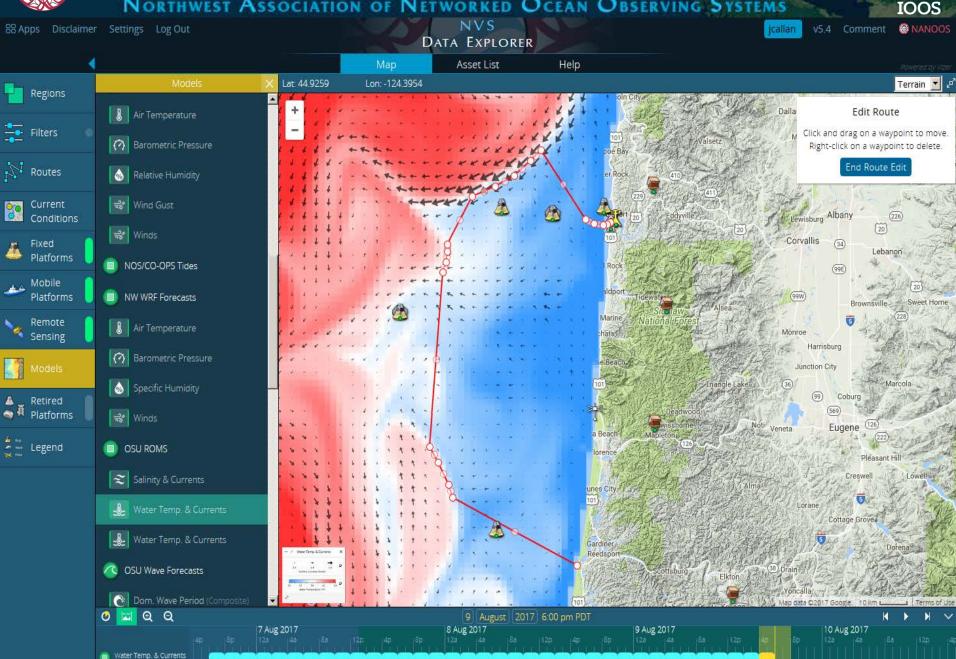

Climatologies Web App	
Plot other year data (development of long time-series started)	Underway
Scalable climate plots – include plots for different years, scalable time (i.e. Ability to zoom in on specific period, hours, days, week etc)	Planning
Incorporate NERRS data into Climatology App	Not Started
Misc. Requested Apps or Features	
Bathymetric contours (Fathoms).	COMPLETED
X-band radar app (Incorporate into Maritime/Boater App, i.e. time-average imagery of wave, tidal fronts, wave direction, spectra plots, time series of wave length, period, extrapolate bathymetry)	Waiting for imagery
Common color map for all models.	Some discussion.
Particle tracking. Develop a prototype using one model and then add models and parameters that could be adjusted	Not Started
Extreme Total Water Level prediction tool	Not Started
Develop standardized data sets for modelers to use for testing purposes. NANOOS model testbed (consistent colors and variable ranges (incorporate all models in comparator).	Not Started
Integrate nearshore bathymetric surveys into NVS beaches and shorelines web app	Not Started
Estuary information page / co upwelling page. Includes infographics for events and describing stories.	Not Started
Watershed address. GIS of watershed layers to incorporate into layers in NVS. Clickable point that pops up user address.	Not Started
Profile plots for ORCA buoys	COMPLETED
Current Conditions (synoptic awareness)	COMPLETED
"Recreational water app": Target: kayakers, surfers, kite boarding, etc	NEW:
	Not Started
Build your own web app	NEW:
	Not Started


- NAN

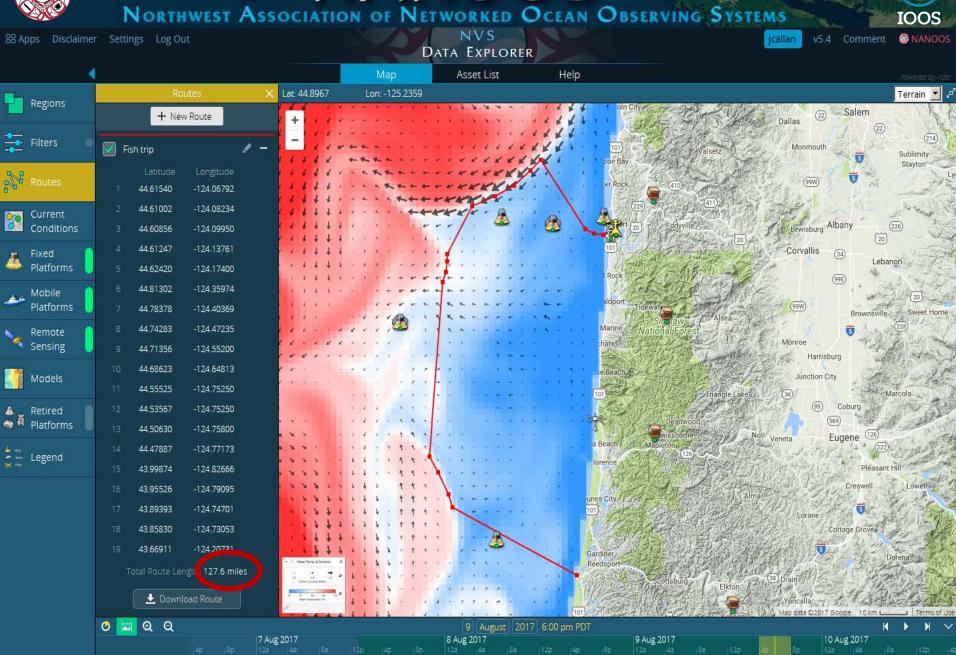


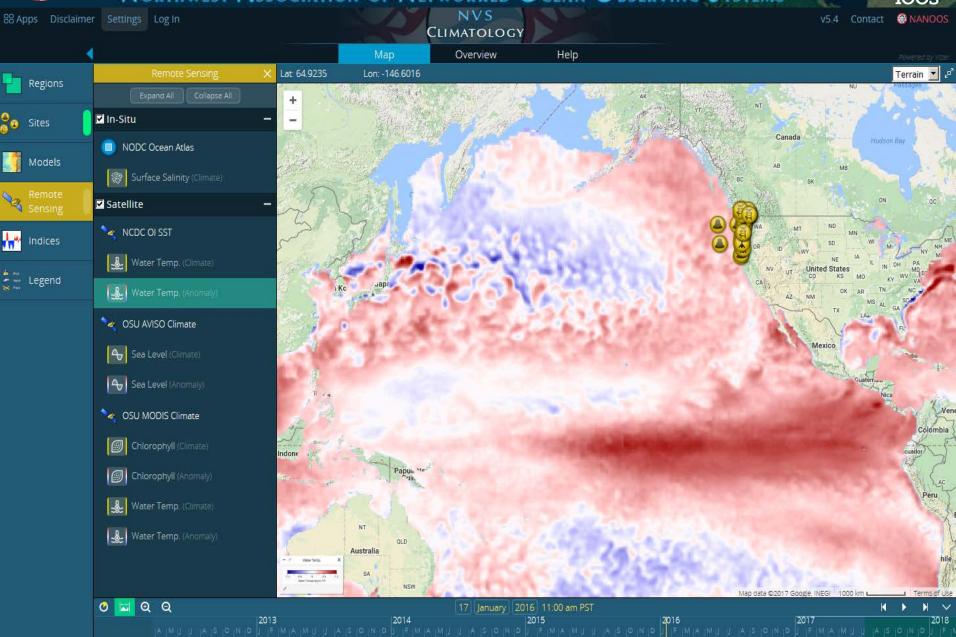
- NAN


Northwest Association of Networked Ocean Observing Systems

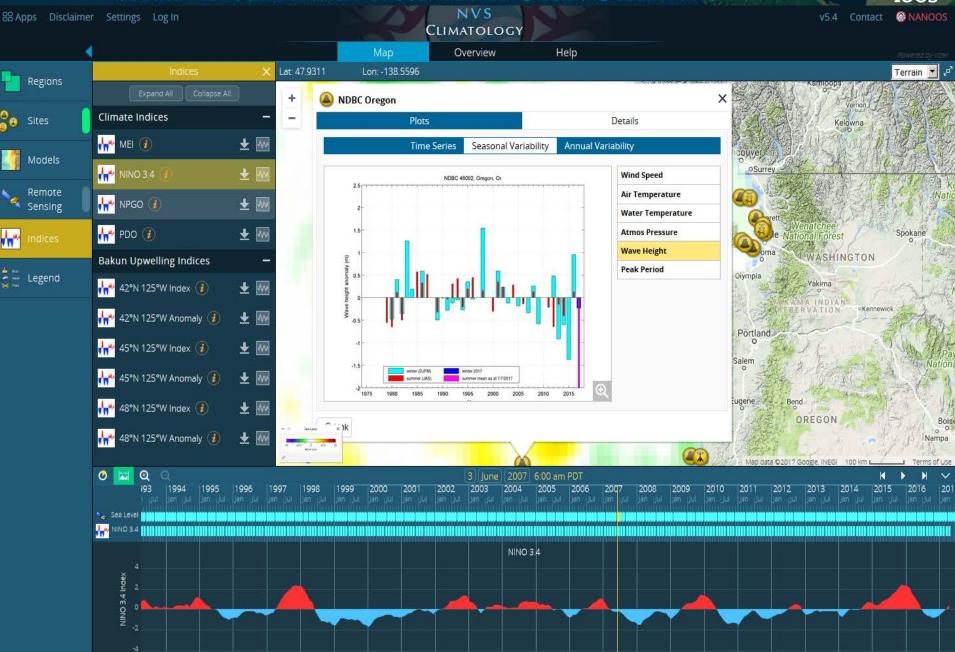


12 °C

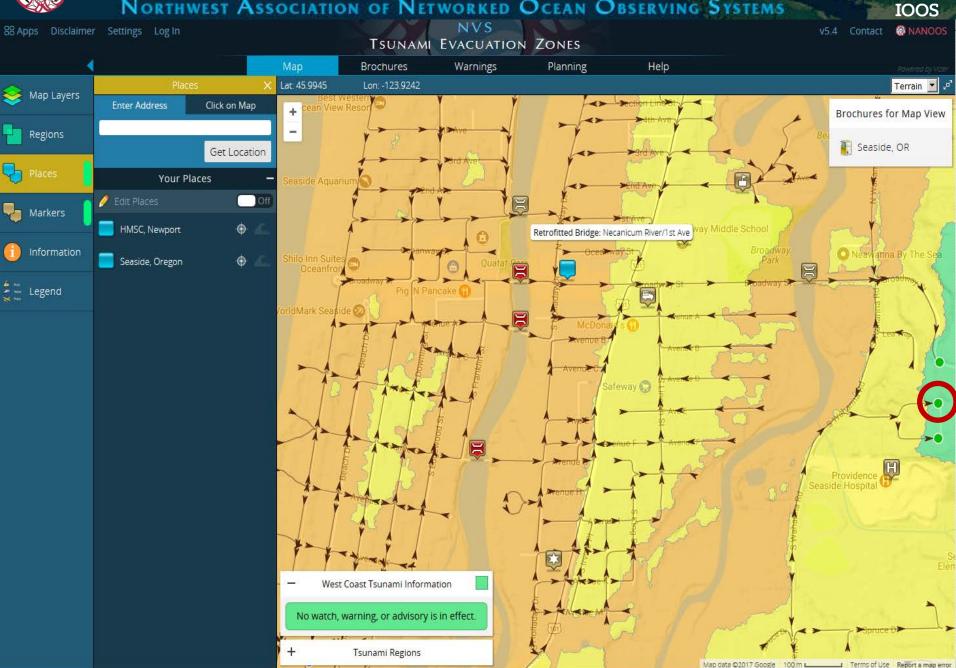



Water Temp. & Currents

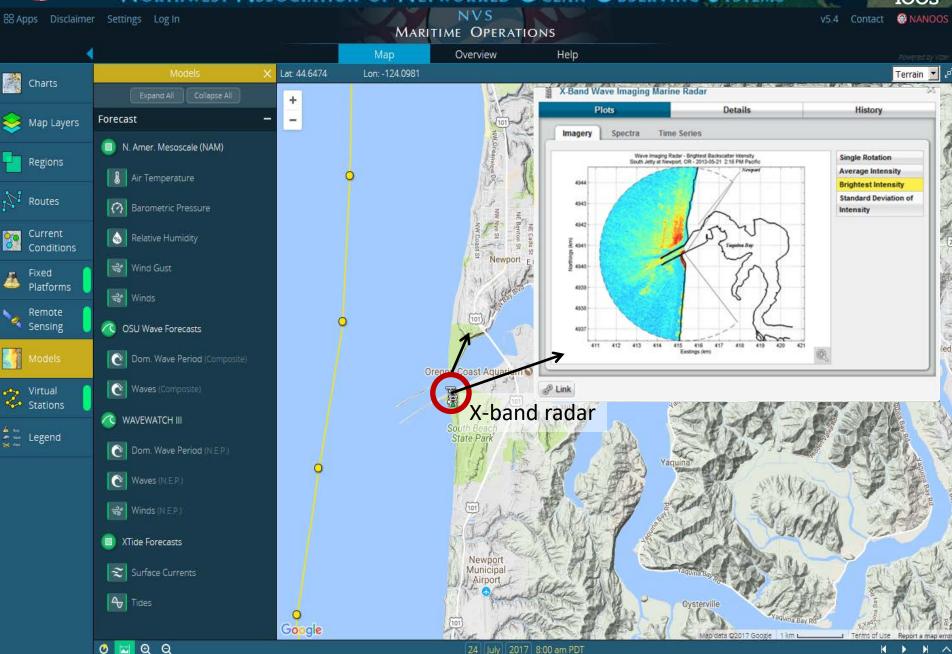
-NANOOS-



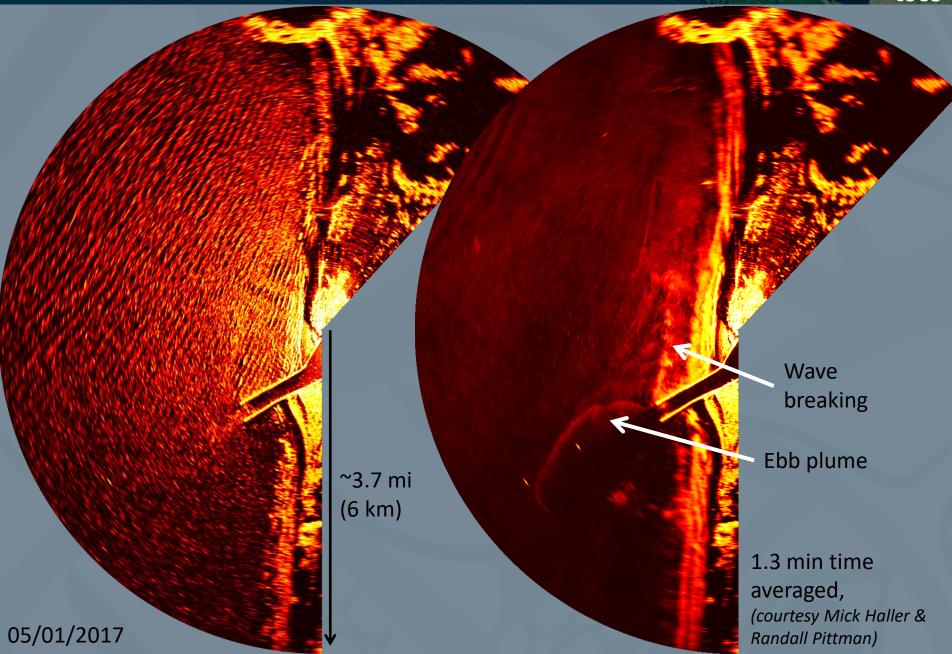
-NANOOS-

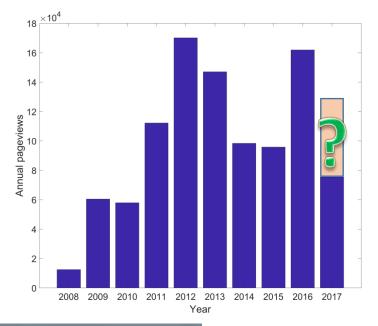

IOOS

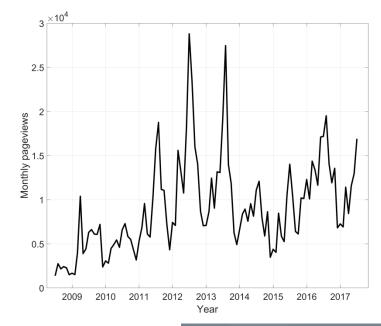
Northwest Association of Networked Ocean Observing Systems

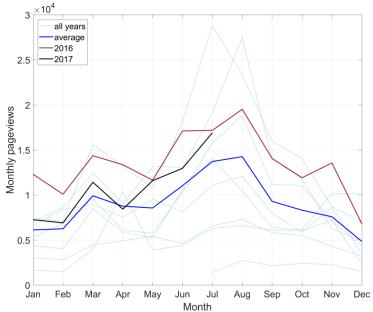


NORTHWEST ASSOCIATION OF NETWORKED OCEAN OBSERVING SYSTEMS NVS 88 Apps Disclaimer Settings Log In MARITIME OPERATIONS Help Overview Lat: 44.6345 Terrain -Charts Relative Humidity Southbeach, Yaquina Bay and River Kelp **➾** Wind Gust rky Map Layers Region: Oregon 17 ≼ Winds 12 Latitude: 44.6250 Longitude: -124.0433 vey OSU Wave Forecasts 14 **○**REGULATED Dom. Wave Period (Composite) NAVIGATION AREA 6 S 165.1325 Current (see note A) 72 Waves (Composite) 15 WAVEWATCH III ¹⁰4Yaquina Reef Fixed 15 **Platforms** South Beach Dom. Wave Period (N.E.P.) (use chart 185 Remote 80.1340 (see note A) 11 1/ Sensing 13 Disposal Area Depths from surveys of ₩inds (N.E.P.) Tides Virtual XTide Forecasts Stations Below MLLW Falling Tide ≈ Surface Currents Water Level (feet) - Legend 4 Tides **ଓ 🔀** ପ୍ର 2017 ال Tide Location - Water Level









How are we doing?

			Avg. Time on
Web App/Page	Pageviews	%	Page
/TsunamiEvac	76895	22.88	4:53
/TunaFish	86076	25.61	5:01
/Explorer	43883	13.06	4:38
/Explorer:NWIC_Bellinghambay (obs) ↑	7234	2.15	5:44
/Boaters	5032	1.50	3:33
/Climatology	4883	1.45	4:00
/ShellfishGrowers	4649	1.38	3:49
/MaritimeOps	3031	0.90	2:42
/BeachMapping	2921	0.87	3:02
/CruisePrism	2455	0.73	4:31
/Explorer:HMSC_Newport (obs)	2092	0.62	4:13
/HFRadar	1764	0.52	1:33
/GliderLaPush	1809	0.54	1:46
/Explorer:NERRS_SOSNSWQ (obs)	556	0.17	6:01
Landing page, login, settings, contact, disclaimer	80649	24.00	0:43
Total	336065		

A Challenge going forward – Many Stakeholders

State agencies (e.g. ODFW, WADOE, DSL, etc.)

Federal agencies (NOAA, NWS,

FEMA, US Coast Guard, etc.)

Cities and Counties

Ocean engineering (instruments,

wave energy, telecommunication)

NGO's

Ports

Bar pilots

Fishers (recreational and commercial)

Shellfish growers

Recreational boaters

Tribes

Geotechnical consultants

Universities/researchers

Schools (K-12)

Public-at-large

Scientists

and many others...

Build your own app (add the assets and overlays you want)

Washington - Oregon - Northern California

NANOOS Data Management and Communications (DMAC)

presentation to NANOOS Principal Investigators & Governing Council August 11, 2017

NANOOS DMAC chair:

Emilio Mayorga – UW-APL

NANOOS DMAC Focus Team:

Emilio Mayorga – UW/APL, Chair Craig Risien – OSU Charles Seaton – OHSU/CMOP Don Setiawan – UW/APL

Part of broader DMAC-UPC-Web-Outreach team. But with focused interactions to give sustained attention to "low-level" DMAC issues and IOOS DMAC compliance.

- ◆Close interactions with: <u>Jon Allan</u> (DOGAMI) & <u>Troy Tanner</u> (UW/APL)
- ◆Also: <u>Alex Dioso</u> UW/APL (System Administration, software development support); and others, ad hoc

SHINGTON - OREGON - NORTHERN CALIFORNIA

DMAC Annual Review: NANOOS

Meeting Recap

Meeting Date: Mon April 17, 1 - 3 pm ET 1-877-417-3954 code 9119817 Google hangout in calendar invite

PO Invitees: Derrick, Tiffany, Kathy, Micah, Jenn, Becky (opt), RA POC

RA Invitees: Jan Newton, Emilio Mayorga, Charles Seaton from OHSU-CMOP

Related Meeting Documents:

Follow-up Actions: (immediate/near-term actions)

Future Ideas: (longer term projects and efforts)

Meeting Summary/Follow-up Comments:

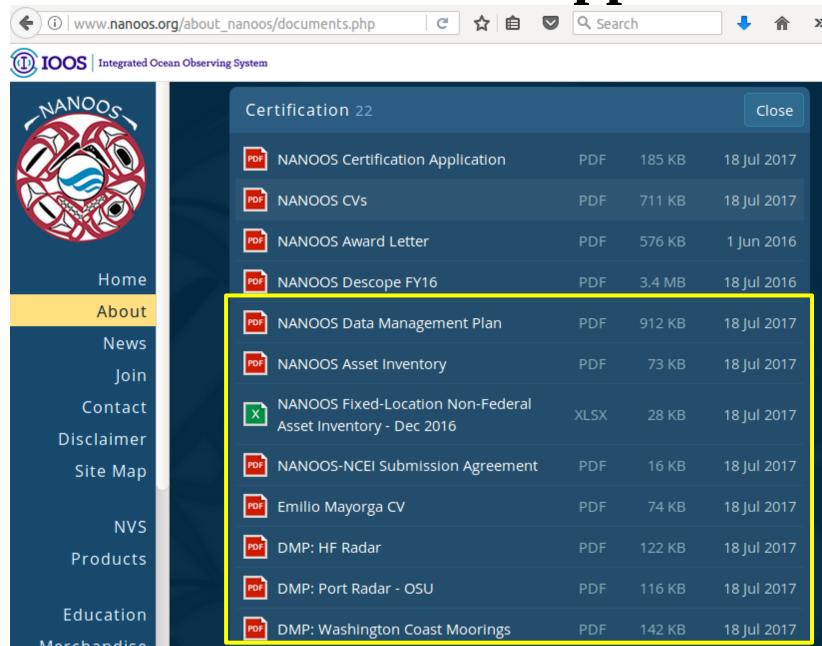
Meeting Summary Notes Key

Intro Discussion:

DMAC Review Notes:

Related Meeting Documents:

- This Recap document is the main location for comments and updates moving forward.
 Please add information here unless there is a specific reason to add it to the minutes.
- Meeting agenda the original agenda for the meeting with the questions and answers from the RA and the Program Office
- Minutes of the meeting The minutes taken during the meeting. If you make edits to



-NANOOS-

Northwest Association of Networked Ocean Observing Systems

Α

"RICE" Certification Application

NANOOS Data Management Plan

Table of Contents

A. Background	1
B. Roles and Responsibilities	2
C. Implementation of Data Management Protocols	3
D. Computing Infrastructure	3
E. Data Streams	4
E.1 NANOOS (Internal) Data Streams	6
* Surface Currents and Waves	
* Fixed-location Sensor Platforms	
* Gliders and Ferries	
* Beach and Shoreline Observations	
E.2 External Data Streams	12
F. Web Portal and User Applications	14
G. References	17

Note: Certification does NOT cover models.

Data Management Plan mentions NANOOS models, but only sparsely.

NANOOS Data Management Plan

Table 1. Data Management summary for NANOOS-supported ("internal") assets; for additional, detailed information on each asset, see the corresponding Appendix Data Management Plan (DATA) ("Internal")

corresponding Appendix Data Man	agement Pla	n (DMP) file(s) lis	sted fo	r eacl	h asse	t.			
	Operator	Asset Count	NVS Metadata Store	NVS Access*	52N SOS	GeoServer	NDBC / WMO GTS	National DAC	Archiving	Appendix DMP File
Surface Currents and Waves										
HF Radar (currents)	OSU	11#	X	All			X	X	NCEI	1.DMP.HFRadar.pdf
Port X-Band Radar (waves)	OSU	2#	X	Plots						2.DMP.PortsXBandRadar.pdf
	Fixed-location Sensor Platforms									
Washington Shelf Buoys	UW	2	X	All	X	X	X			3.DMP.WAShelfBuoys.pdf
Oregon Shelf Buoy	OSU	1	X	All	X	X	X			4.DMP.ORShelfBuoy.pdf, 5.DMP.ORShelfBuoy_OA.pdf
Puget Sound, ORCA Buoy Program	UW	6	X	All	X	X	X			$\underline{6.DMP.PugetSoundORCABuoys.pdf}$
Columbia River estuary and plume, SATURN network	OHSU	14+	X	All	X	X	X		NCEI	7.DMP.ColumbiaSATURNNetwork.pdf
South Slough Estuary Observations	SSNERR	6	X	All	X	X	X			8.DMP.SouthSloughNERR.pdf
Gliders and Ferries										
Northern California Shelf Glider	OSU	1	X	Plots			X	X	NCEI	9.DMP.NorthernCAGlider.pdf
SW WA Glider	OHSU	1x	X				X	X	NCEI	7.DMP.ColumbiaSATURNNetwork.pdf
Victoria Clipper Ferry	WDOE	1	X	All						10.DMP.VictoriaClipperFerry.pdf
Beach and Shoreline Observations										
Oregon Shoreline Observations	DOGAMI	-	X	Plots					State Agency	11.DMP.ORBeachShorelineObs.pdf
Washington Shoreline Observations	WDOE	-	Х	Plots					State Agency	12.DMP.WABeachShorelineObs.pdf
Nearshore Bathymetry	OSU	-	X							13.DMP.NearshoreBathymetry.pdf

^{*} For NVS Access, "All" represents both data download and graphic presentation, and "Plot" only includes graphic presentation; # Number of radar sites; + Several stations are currently inactive but may be redeployed as resources allow; x Not currently deployed, pending servicing.

NANOOS Data Management Plan

Table 2. External, fixed-location in-situ data streams other than those from federal or Canadian federal agencies. These assets are integrated into the NANOOS DAC and NVS.

P	rovider Information					
Code	Name & URL	Type	Contact Name & Email	Asset Count	52N SOS	Notes
Hakai Institute	<u>Hakai Institute</u>	Academic	Wiley Evans, wiley.evans@hakai.org	2	X	Canadian. Burke-o-lator (OA)
HMSC	Hatfield Marine Science Center	Non-Profit	Dann Cutter, Dann.Cutter@oregonstate.edu	1	X	Offline due to sensor servicing
King County	King County	County	Stephanie Jaeger, Stephanie.Jaeger@kingcounty.gov	4	X	Implementing QARTOD-based QC flagging.
NWIC	Northwest Indian College	Academic	Beth Curry, beth4cu@uw.edu	1	X	Close partnership with NANOOS, UW
ONC	Ocean Networks Canada	Academic	Mike Morley, mmorley@uvic.ca	4		Canadian. Large, long-term observation system. Only seabed platforms currently integrated; will expand platform integration in 2017
OOI	Ocean Observatories Initiative	Academic	Jack Barth, barth@coas.oregonstate.edu	6		Large, long-term observation system. Using Endurance Array platforms. Will expand sensor and platform integration in 2017 and 2018
PennCoveShellfish	Penn Cove Shellfish	Industry	Jim Nagel, jim@penncoveshellfish.com	2	X	
PSI	Pacific Shellfish Institute	Non-Profit	Andy Suhrbier, suhrbier@pacshell.org	2	X	$\begin{array}{c} \text{Includes one Burke-o-lator (OA). Close partnership} \\ \text{with NANOOS.} \end{array}$
TaylorShellfish	Taylor Shellfish	Industry	Benoit Eudeline, BenoitE@taylorshellfish.com	1	X	Burke-o-lator (OA). Close partnership with NANOOS.
WADOH	Washington Department of Health	State	Clara Hard, clara.hard@doh.wa.gov	18	X	Seasonal network (late Spring to early Fall)
WhiskeyCrShelfish	Whiskey Creek Shellfish Hatchery	Industry	Alan Barton, alan barton22@yahoo.com	1	X	Burke-o-lator (OA). Close partnership with NANOOS.

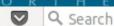
New or Enhanced Assets

http://nvs.nanoos.org/AssetHistory

• In situ, fixed

- CB-06 off Coos Bay (relocated NH-10 mooring)
- Fanny Bay, BC (Hakai Institute & Fanny Bay Oysters)
- ONC/VENUS overhaul, re-activation
- Relocated/new NOS/COOPS station at Columbia mouth
- New SS NERR met station; improved NERR data harvesting
- OOI enhancements

Overlays (remote sensing, models, reanalysis)


- HF Radar overhaul, great improvements
- LiveOcean model: New nutrient, oxygen and OA variables
- OSU ROMS: Increased forecasting frequency to 2 hours and added site forecasts

Others

- Climate indices
- Upwelling indices and anomalies

♠ https://ioos.us

Integrated Ocean Observing System

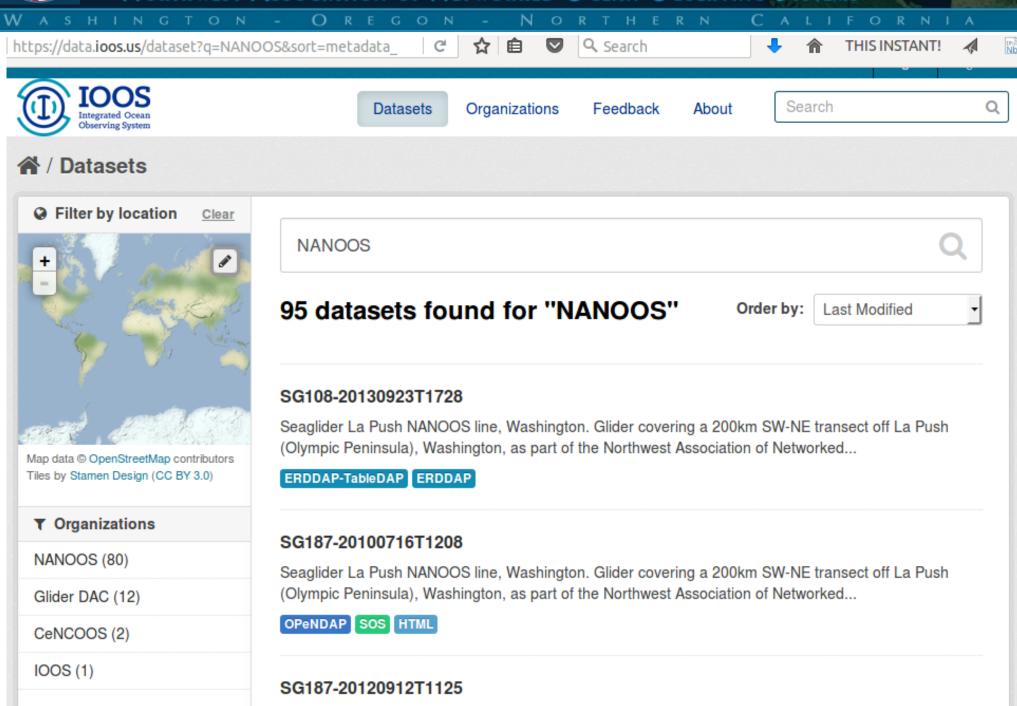
DATA -

VIEWERS -

DACS -

REGIONAL ASSOCIATIONS -

ABOUT -


> Search IOOS Data

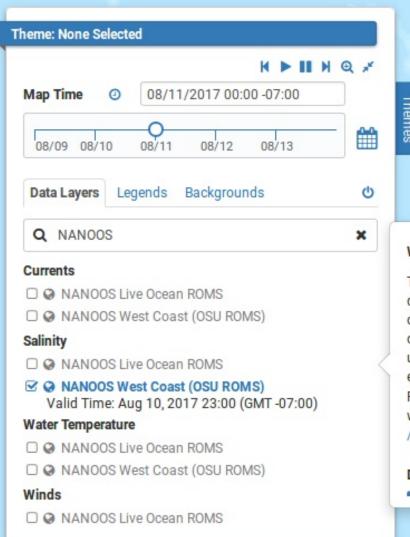
-NANOOS-

Northwest Association of Networked Ocean Observing Systems

Seaglider La Push NANOOS line Washington, Glider covering a 200km SW-NF transect off La Push.

IOOS EDS Model Viewer

eattle


Olympia

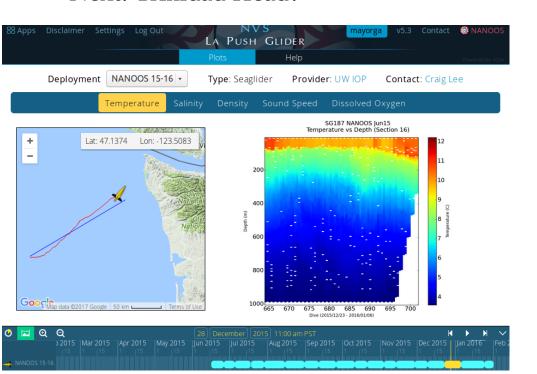
< Portland

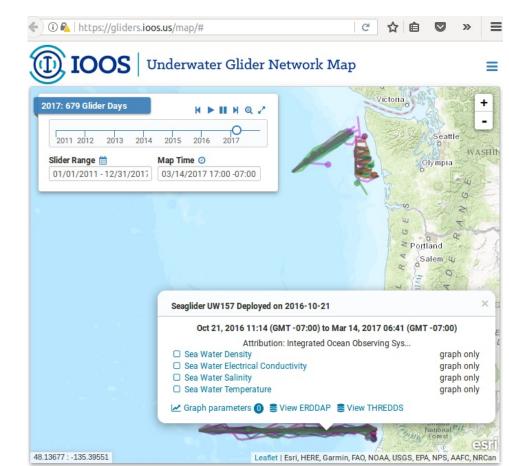
Medfordo

Salem

Victoria

Water Salinity @ NANOOS Live Ocean ROMS

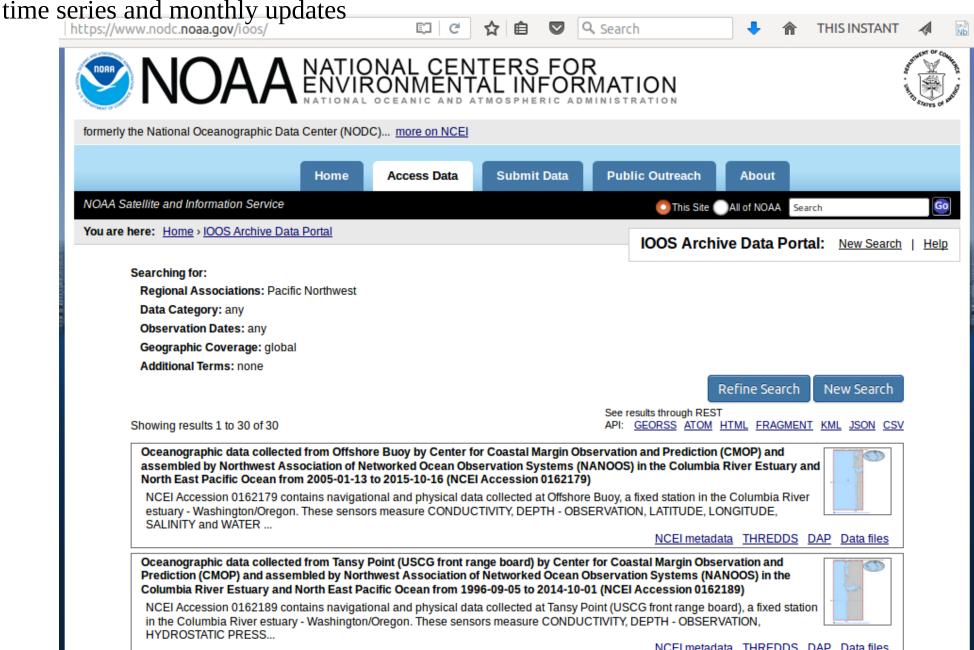

The experimental nowcast and forecast fields displayed here from LiveOcean are produced by a computer model of NE Pacific coastal ocean circulation. These coastal ocean forecasts are updated daily at approximately 3:00 pm. They are an experimental product intended for research use only. For more information please visit the LiveOcean webpage here: https://faculty.washington.edu /pmacc/LO/LiveOcean.html


Data Access

THIDEDDO

NANOOS Glider data advances

- 3 transects now on IOOS Glider DAC as complete time series:
 - La Push (UW), 6 deployments
 - SW WA (CMOP), 16 deployments
 - Trinidad Head (OSU), 5 deployments
- https://data.ioos.us/gliders/erddap/search/index.html?searchFor=NANOOS
- NVS Glider App
 - Soon: Enhanced La Push coverage, plots
 - Next: Trinidad Head?



-NANOOS-

Northwest Association of Networked Ocean Observing Systems

Important milestone with formal NANOOS archiving with NCEI, initially with complete CMOP

Expanding DMAC capabilities, compliance

- Ongoing enhancements and expansion of NANOOS web services, registration with IOOS Catalog. Primary observation data, models, and data products (anomalies, etc.).
- **Long time series**. Substantial progress over last year. Goal to make data available via IOOS DMAC services and accessible to NVS. Anticipated initial, visible benefits on those two fronts in next 6 months.
- **ERDDAP** implementation for more thorough and flexible data access (OSU and UW test servers in place).
- **QARTOD near-real-time QA/QC.** Ongoing participation in IOOS QARTOD webinars, discussions. Pilot NANOOS implementation next 6-12 months.
- **Data Archiving with NCEI.** Adapt procedures and lessons learned with CMOP archiving, to other NANOOS assets.

NANOOS Outreach Engagement & Education

NANOOS Joint PI and Governing Council Meeting
August 11, 2017

Rachel Wold, Outreach Specialist Marine Lebrec, Outreach Specialist

Scope of Work

Product Development	Work with DMAC and User Products Committees on tailored product development, increase usability of NVS
User Engagement	Conduct outreach and trainings to select user groups as resources permit
Networking	Maintain existing and build new relationships with NANOOS priority area users and the education community

Education:

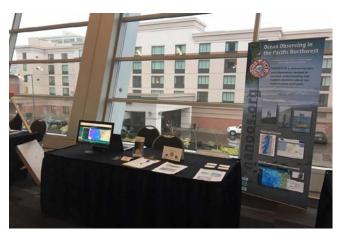
NANOOS goal remains increasing

ocean literacy

- NW Aquatic & Marine **Educators Conferences**
- Classroom Visits
- MS & HS Summer Science Camps
- Outreach @ informal learning centers

OBSERVING SYSTEMS

Outreach: targeted user groups


NANOOS goal to link user groups with data products

- Pacific Coast Shellfish Growers **Association Meeting**
- Saltwater Sportsmen's Show
- Pacific Seabird Group Conference
- Recreational boaters


WASHINGTON - OREGON - NORTHERN CALIFORNIA

Outreach: targeted user groups

BOATERS

- Coho Ho Ho seminar and Captains' Meetings
- Puget Sound Yacht Club
- Corinthian Yacht Club
- Puget Sound Cruising Club
- Newsletters and blog posts
- Focus groups
- Portland Boat Show 2018
- Seattle Boat Show 2018

TWORKED OCEAN OBSERVING SYSTEMS

Outreach: engaging with the public

Soundwaters - A 'one day university for all'

American Meteorological Society WeatherFest

NOAA Open House

Aquarium Discover Science Weekend

Washington - Oregon - Northern Californi,

Community Workshop Newport, Oregon

Goals:

- Increase awareness of IOOS and NANOOS
- Share knowledge of what NANOOS is doing
- Showcase NVS portal and apps
- Understand community's needs with respect to NVS
- Hear what additional tools and data are needed

Outreach: social media & NANOOS website

NANOOS Observer

July 2017

Updates to NVS (NANOOS Visualization System)

New Data Online: Buoy / Sensor Deployments

Several new instruments have been deployed within the last month, including the NDBC Washington buoy (offshore Washington), the <u>CMOP Saturn02 mooring</u> (Columbia Estuary), and the <u>OSU CB-06 mooring</u> (6 NM W of Coos Bay, Oregon).

Additionally, <u>Taylor Shellfish Hatchery sensors</u> (Dabob Bay, Hood Canal) are back online: these instruments target ocean acidification observations including pCO₂, pH, and aragonite saturation state. Data coming from these assets can be found on <u>NYS</u>.

LiveOcean Model on IOOS EDS Model Viewer

The <u>LiveOcean model</u> has been added to the IOOS EDS Model Viewer for simulations of currents, salinity, water temperature, and winds. This portal includes model outputs and observations from around the globe that contribute to ocean monitoring.

Plan for Upcoming Year

Education Efforts

- Continue to support NANOOS education partners
- Continue to support student built buoy and similar STEM projects
- Portland conference NAME

Outreach Efforts

- Continue to assist with development of web and mobile apps
- Continue outreach to current users groups, expand to other recreational users
- Additional tutorial videos for various apps

6. GC Business

2017 NANOOS GC Board

Academic:

- David Martin, UW, Governing Council Board Member for UW (CHAIR)
- Mike Kosro, OSU, Governing Council Board Member for OSU (VICE CHAIR)
- Antonio Baptista, OHSU, Governing Council Board Member for OHSU

State:

- Carol Maloy, Ecology, Governing Council Board Member for Washington State Agencies
- Jon Allan, DOGAMI, Governing Council Board Member for Oregon State Agencies

Tribes:

- Paul McCollum, Port Gamble S'Klallam Tribe, Governing Council Board Member for Tribes
- Joe Schumacker, Quinault Indian Nation, Governing Council Board Member for Tribes

Federal:

- Mark Strom, NOAA NWFSC, Governing Council Board Member for Washington Federal Offices
- Andy Lanier, Governing Council Board Member for Oregon Federal Offices

Industry:

- Margaret Barrette, PCSGA, Governing Council Board Member for Industry
- Andrew Barnard, WetLabs, Governing Council Board Member for Industry

NGO:

- Fritz Stahr, OIP, Governing Council Board Member for Non-Governmental Organizations
- Gus Gates, Surfrider, Governing Council Board Member for Non-Governmental Organizations

At Large:

- Paul Dye, WA Sea Grant, Governing Council Board Member At-Large
- Chris Mooers, PSU, Governing Council Board Member At-Large

NANOOS business

- NANOOS GC Board
 - election next year
- NANOOS pays annual \$1000 non-federal dues to IOOS Association, via:
 - Seabird Scientific
 - Pacific Coast Shellfish Growers Association
 THANK YOU!!!

7. Round Table for announcements from GC members

8. Wrap-up, Action Item review, and Adjourn